
UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF RHODE ISLAND

)

UNILOC USA, INC. and UNILOC)
SINGAPORE PRIVATE LIMITED,)

)
Plaintiffs,)

)
v.) C.A. No. 03-440 S

)
MICROSOFT CORPORATION,)

)
Defendant.)

______________________________)

OPINION AND ORDER

William E. Smith, United States District Judge.

Uniloc USA, Inc. and Uniloc Singapore Private Limited

(collectively, “Uniloc”) have brought this patent infringement

action against Microsoft Corporation (“Microsoft”) for allegedly

infringing Uniloc’s United States Patent Number 5,490,216 (“the

‘216 Patent”). Microsoft has moved for summary judgment on non-

infringement and invalidity. Also, Uniloc has moved for partial

summary judgment on Microsoft’s counterclaim of inequitable

conduct. The Court heard oral argument on November 29, 2006, and

took the matter under advisement. Applying the claim terms as

previously construed, Uniloc USA, Inc. v. Microsoft Corp., 447 F.

Supp. 2d 177 (D.R.I. 2006), and for the reasons that follow,

Microsoft’s Motion for Summary Judgment will be granted on the

 Because Microsoft’s motion is resolved on this issue, the1

Court does not reach the issue of invalidity.

 S e e W i k i p e d i a , C o p y p r o t e c t i o n ,2

http://www.wikipedia.com/wiki/Copy_protection (describing “nibbler”
programs) (as of October 2, 2007).

2

issue of non-infringement, and Uniloc’s Motion for Partial Summary1

Judgment will be denied as moot.

I. Background and Facts

In the late 1970s, the personal computer revolution changed

the market dynamics for software products. See generally Martin

Campbell-Kelly, Not All Bad: An Historical Perspective on Software

Patents, 11 Mich. Telecomm. & Tech. L. Rev. 191 (2005). Along with

the rise of the personal computer came a wave of software piracy.

Ever since, software vendors and determined hackers have been

locked in an arms-race where new and evermore sophisticated

software protection techniques are developed, then “cracked,”

leading to new development, and so on. Trotter Hardy, Property

(and Copyright) in Cyberspace, 1996 U. Chi. Legal F. 217, 251

(1996). Early anti-piracy efforts focused on copy protection

technology that made it difficult to duplicate the original

software media (e.g., the floppy disks containing the software).

These early copy protection systems were broken by “nibbler”

programs that made very precise bit-by-bit copies of the original

software media. Later, as larger software packages that had to be2

installed on the user’s computer became more prevalent, copy

3

protection technology became less effective because a legitimate

user could simply “loan” the original disks to someone else for the

purpose of installing it on their computer; this is sometimes

referred to as “pass-along piracy.” John A. Rothchild, Economic

Analysis of Technological Protection Measures, 84 Or. L. Rev. 489,

548 (2005). Some software vendors responded to pass-along piracy

by requiring the use of a hardware “dongle,” i.e., a device

containing an electronic serial number that had to be plugged into

a computer port in order to run the software. Id. at 493 n.7.

While this type of system was much harder to break because it

required building an equivalent hardware device, users frequently

balked at the inconvenience of having to attach a piece of hardware

to their computer in order to run a software package. Software

copy protection technologies in general were widely regarded as an

annoyance to customers. Id. at 546-547.

In the 1990s, many software vendors stopped concentrating on

preventing the copying of software media, and, instead, began

focusing on preventing the use of already installed software by

unlicensed users. The basic premise of such systems is that after

installing a software package the user must “validate” or

“activate” the software to verify that their installation is

legitimate. Id. at 495. The main advantage of this approach is

that it renders copying of the original software media relatively

unimportant, since even the copied software must be installed and

4

validated before it can be used. Validation typically requires

that the user exchange information with a centralized registration

authority managed by the software vendor. Id. This allows the

vendor to control whether or not to validate a specific

installation of the software. Software validation schemes

generally employ a database at the registration authority that

tracks all legitimate installations of the software. In order to

uniquely identify each legitimate copy of the software shipped and

later purchased and installed by a user, software vendors must

attach a unique number to each copy of the media. This number can

then be checked against the centralized database at the

registration authority when users validate their installation. If

the database contains information indicating that a particular copy

of the software has been installed and validated previously, the

registration authority can refuse to validate the new installation

based on the suspicion that it is likely fraudulent.

Initially, such validation techniques required that each copy

of the software media be encoded with a unique “registration”

number that identified that particular copy of the software. This

approach, however, was costly and time consuming, because each copy

of the software media had to be slightly different from all other

copies due to the unique registration number. In turn, this meant

that software vendors were unable to use a mass duplication

manufacturing process to produce their products. Another weakness

5

of the software validation approach was that determined copyists

could still perform a file-by-file copy of an already installed and

“validated” copy of the software. This validated version could

then be illegally copied to and run on another system.

The ‘216 Patent offered solutions for both problems. One of

its main contributions was to invent a validation process by which

the unique registration number could be distributed separately from

the software media. Today, this type of number is frequently found

on the back of the CD jewel case, and is not part of the software

program itself. The advantage of employing the approach described

in the ‘216 Patent is that the software media can once again be

mass produced since all copies are identical. In a second

contribution, the ‘216 Patent describes a process that evaluates

the user’s computer hardware each time the software is run to

determine whether it is the same computer on which the software was

originally installed. This countermeasure is designed to make it

difficult to use a file copying technique to avoid the validation

process. Each computer has a unique hardware “signature” that can

be detected and compared with the computer hardware in place when

the software was originally validated. If the signatures match,

the computer on which the software is currently running is assumed

to be the same as that on which it was originally installed;

otherwise, the software may have been copied to another machine,

prompting re-validation.

6

The Achilles’ heel of the invention, however, is its weak

security. The ‘216 Patent requires matching “magic numbers”

(values whose only meaning derives from the fact that they match,

or fail to match, other values — in the ‘216 Patent these values

are referred to as “licensee unique IDs”), which are generated

separately on both the client- and server-side parts of the

validation system by the same algorithm, using the same inputs. If

the values match, that is considered “proof” that the registration

authority validated the installation. But the entire registration

system can be bypassed if the user can guess the magic number that

would normally be generated by the server. While the chance of

randomly guessing the correct magic number is very slight, a

determined hacker need only reconstruct the algorithm used by the

server to compute that number. Then a relatively simple program

can be created that takes the identical inputs as the server-side

system and produces the identical magic number that would be

produced by the genuine registration authority. A hacker is

greatly aided by knowledge that the ‘216 Patent requires that the

same algorithm that produces the magic number on the server is also

used to generate the magic number on the client. This makes it

possible to crack the validation system by reverse engineering the

client-side software to discover the actual algorithm used to

compute the magic number. See, e.g., Rothchild, Economic Analysis

at 508. It would, of course, be much harder to determine the

 The ‘216 Patent describes the algorithm used to compute the3

magic numbers as an “adder or summer” or its equivalents. ‘216
Patent, col. 12, ll. 52-53. This is, of course, a red herring, as
a simple arithmetic summation of the values provided by the user
would be far too easy to discover and hence to crack. Instead, the
inventor of the ‘216 Patent likely planned to use a far more
complex algorithm that would be commensurately more difficult to
reverse engineer. Whether or not this “secret” algorithm should
have been disclosed in the ‘216 Patent as the best method is not an
issue this Court needs to reach. In all likelihood, the inventor
of the ‘216 Patent was not required to disclose the “secret”
algorithm because this would instantly render the invention
useless. Fonar Corp. v. General Elec. Co., 107 F.3d 1543, 1549
(Fed. Cir. 1997); see In re Hayes Microcomputer Prods., Inc. Patent
Litig., 982 F.2d 1527, 1537-38 (Fed. Cir. 1992).

7

algorithm were it only on the server, but the ‘216 Patent requires3

that the magic number generator be included on both the client and

the server. This requirement is the natural result of the

symmetric design of the invention described by the ‘216 Patent. If

the magic number were generated only on the server, there would be

no equivalent number on the client for it to match.

Microsoft’s Product Activation system is, in a macro sense,

similar to the invention described by the ‘216 Patent. Like the

‘216 Patent, Microsoft’s system is designed to prevent unlicensed

users from running their software. However, the process that

Microsoft’s system uses to accomplish this goal is different in two

important ways. First, it does not use the same algorithm on the

client and server systems to compute matching magic numbers. For

example, the client creates a Product ID using the Product Key

(roughly equivalent to the registration number in the ‘216 Patent)

distributed with the software media, the software’s version number,

 Some software licenses may explicitly permit the user to4

install the software on two computers (for example, a desktop and
a laptop computer).

8

and a random value. The Product Activation system on the client

also generates a Hardware ID by quantifying various components of

the computer hardware on which the software is being installed, and

then processing this information using a one way mathematical

transformation called a “hash” function. The Product ID and

Hardware ID are then sent to the server-side registration

authority. At the registration authority, a check is performed to

determine whether the Product ID received from the client is

already stored in the centralized database. If the Product ID is

not yet in the database, its absence indicates that this particular

copy of the software is being installed for the first time. The

first installation of a particular copy of the software is

presumptively considered valid, and the Product ID and Hardware ID

are then stored in the database as a record of this installation.

If the Product ID is already in the database, indicating that this

copy of the software has been installed previously, the

installation is considered suspect and the user is asked to contact

Microsoft’s registration authority. This situation may arise in

legitimate circumstances; for example, when a user reinstalls the

software on a new computer (assuming that it is deleted from the

old computer in compliance with the software vendor’s licensing

rules).4

 See generally Wikipedia, Public-key cryptography,5

http://en.wikipedia.org/wiki/Public-key_cryptography (as of October
3, 2007).

9

Second, Microsoft’s system does not rely on the secrecy of its

algorithms for its integrity; instead, it relies on public key

cryptography. Joshua L. Colburn, “Don’t Read This If It’s Not For

You”: The Legal Inadequacies of Modern Approaches to E-Mail

Privacy, 91 Minn. L. Rev. 241, 259 (2006). Public key (or

asymmetric) cryptography employs a pair of keys: a public key and

a private key. The two keys are always generated together and are

mathematically related, usually through manipulation of very large

prime numbers. Their critical property, however, is that the5

private key cannot be practically derived from the public key.

Thus, the private key is kept secret, while the public key may be

widely distributed. Each key can transform data in just one

direction, turning plain text into cipher-text or vice versa. For

example, if data is encrypted using the public key, it can be

decrypted only with the private key, guaranteeing that the

communication is private. On the other hand, data encrypted by the

private key can be decrypted by anyone having the public key,

thereby authenticating that the message came from whomever has the

corresponding private key.

When the registration authority approves a user’s

installation, the server encrypts the Product ID, Hardware ID, and

additional information from the server into a “license” data

 In the case where the user chooses to validate the software6

by telephone rather than via the Internet, the registration
authority generates an encrypted Confirmation ID, a short form of
the “license,” which is communicated to the user by phone.

10

structure using the secret, private key, and then returns it to the

client. Back on the client’s system the “license” is decrypted

using the public key, yielding the Product ID and Hardware ID

stored within. Finally, the client compares those decrypted values

with the ones generated on the client initially. If they match,

thereby authenticating the “license” returned by the server, the

user’s installation is considered validated and the protected

software is available for full use. The private key, used to

encrypt the “license” or the Confirmation ID is stored only on

Microsoft’s server, so that it cannot be determined by reverse6

engineering the client software. The user’s system contains the

mathematically related public key, where it is used to decrypt the

“license” or Confirmation ID, revealing the Product ID and Hardware

ID. This application of asymmetric key cryptography provides a

“digital signature,” ensuring that the message from Microsoft’s

registration authority is authentic.

In sum, Microsoft’s system is not as vulnerable as the

invention described by the ‘216 Patent. Rather than relying on a

secret algorithm employed to generate matching magic numbers on

both the client and the server, Microsoft’s system employs

asymmetric key cryptography, which allows the use of open and

different algorithms on the client and server. So long as the

 The strength of any key-based cryptographic technique is7

directly related to the difficulty of discovering the key, which in
turn depends on the length of the key. As the length of the key
increases, the time and effort required to guess the correct key
increases. Trying every possible key is known as a brute force
attack. An 8 bit key can be one of 256 possible values; a brute
force attack on a key this size is trivial. The number of possible
key values increases exponentially with the key’s size (e.g., a
128-bit key size contains 2 possible key values). See Wikipedia,128

Key size, http://www.wikipedia.org/wiki/Key_size (as of October 3,
2007).

11

private key housed on Microsoft’s servers remains secret, it is a

very difficult system to bypass. Importantly, it is not the use7

of encryption per se that makes Microsoft’s system substantially

different from the invention disclosed by the ‘216 patent; it is

certainly possible to use encryption technology in the context of

a software validation system that would infringe upon Uniloc’s

intellectual property. As described in the analysis that follows,

however, it is the way encryption technology is employed by

Microsoft’s system that takes it outside the claims of the ‘216

patent and thus precludes a finding of infringement.

II. Discussion

A. Summary Judgment Standard

Summary judgment may be had in a patent case (and, in

particular, on non-infringement) if there is no genuine issue

whether the accused device is encompassed by the patent claims.

Novartis Corp. v. Ben Venue Labs., Inc., 271 F.3d 1043, 1046 (Fed.

Cir. 2001); Pitney Bowes, Inc. v. Hewlett-Packard Co., 182 F.3d

1298, 1304 (Fed. Cir. 1999). Since the ultimate burden of proving

12

infringement rests with the patentee, an accused infringer seeking

summary judgment of non-infringement may meet its initial

responsibility either by providing evidence that would preclude a

finding of infringement, or by showing that the evidence on file

fails to establish a material issue of fact essential to the

patentee's case. Novartis, 271 F.3d at 1046; Vivid Techs., Inc. v.

Am. Sci. & Eng'g, Inc., 200 F.3d 795, 807 (Fed. Cir. 1999). As in

more routine contexts, evidence must be viewed in the light most

favorable to the party opposing the motion, with doubts resolved in

that party’s favor. Bus. Objects, S.A. v. Microstrategy, Inc., 393

F.3d 1366, 1371-72 (Fed. Cir. 2005).

Once the movant overcomes this initial hurdle, the burden

shifts to the non-movant to designate specific facts showing that

there is a genuine issue for trial. Celotex Corp. v. Catrett, 477

U.S. 317, 324 (1986); Novartis, 271 F.3d at 1046. The nonmovant

“must point to an evidentiary conflict created on the record at

least by a counter statement of a fact or facts set forth in detail

in an affidavit by a knowledgeable affiant. Mere denials or

conclusory statements are insufficient.” Barmag Barmer

Maschinenfabrik AG v. Murata Machinery, Ltd., 731 F.2d 831, 836

(Fed. Cir. 1984); see also Applied Companies v. United States, 144

F.3d 1470, 1475 (Fed. Cir. 1998) (“It is well settled that ‘a

conclusory statement on the ultimate issue does not create a

genuine issue of fact.’”) (quoting Imperial Tobacco Ltd. v. Philip

13

Morris, Inc., 899 F.2d 1575, 1581 (Fed. Cir. 1990) (emphasis in

original)); Glaverbel Societe Anonyme v. Northlake Marketing &

Supply, Inc., 45 F.3d 1550, 1562 (Fed. Cir. 1995) (“There must be

sufficient substance, other than attorney argument, to show that

the issue requires trial.”). “[I]nsupportable, [or] specious . . .

explanations or excuses will not suffice to raise a genuine issue

of fact.” Ferring B.V. v. Barr Labs., Inc., 437 F.3d 1181, 1193

(Fed Cir. 2006) (quoting Paragon Podiatry Lab., Inc. v. KLM Labs.,

Inc., 984 F.2d 1182, 1190 (Fed. Cir. 1993) (emphasis in original)).

Given the numerous factual issues involved and the need for

expert testimony in these cases, a motion for summary judgment

should be approached cautiously. Amhil Enters. Ltd. v. Wawa, Inc.,

81 F.3d 1554, 1557-58 (Fed. Cir. 1996); SRI Int’l v. Matsushita

Elec. Corp. of Am., 775 F.2d 1107, 1116, (Fed. Cir. 1985)

(“[I]nfringement is itself a fact issue, [so] a district court must

approach a motion for summary judgment of infringement or non-

infringement with a care proportioned to the likelihood of its

being inappropriate.”). Nevertheless, where a patentee opposes the

motion with only “conclusory allegations, improbable inferences,

and unsupported speculation,” Smith v. Stratus Computer, Inc., 40

F.3d 11, 13 (1st Cir. 1994) (internal citations and quotation marks

omitted), a defendant’s motion for non-infringement must be

granted.

14

B. The Law of Infringement

It is hornbook patent law that infringement of even a single

claim entitles a patentee to damages. CollegeNet, Inc. v.

ApplyYourself, Inc., 418 F.3d 1225, 1236 (Fed. Cir. 2005). A

patentee can show infringement in two ways. The first, “literal”

infringement, exists “when the accused device literally embodies

each limitation of the claim.” Kraft Foods, Inc., v. Int’l Trading

Co., 203 F.3d 1362, 1370 (Fed. Cir. 2000); Imatec, Ltd., v. Apple

Computer, Inc., 81 F. Supp. 2d 471, 484 (S.D.N.Y. 2000) (“To be

liable for literal, direct infringement, a defendant must duplicate

each element of a patent claim exactly.”). However, the absence of

even one element of a claim will defeat an action for literal

infringement. Bayer AG v. Elan Parm. Research Corp., 212 F.3d

1241, 1247 (Fed. Cir. 2000) (“If any claim limitation is absent

from the accused device, there is no literal infringement as a

matter of law.”); Mas-Hamilton Group v. LaGard, Inc., 156 F.3d

1206, 1211 (Fed. Cir. 1998) (holding the absence of a single

limitation fatal to plaintiff’s case). The second, the so-called

“doctrine of equivalents,” often softens the stringency of this

“all limitations” requirement. Judge Learned Hand described the

doctrine as designed “to temper unsparing logic and prevent an

infringer from stealing the benefit of the invention.” Royal

Typewriter Co. v. Remington Rand, Inc., 168 F.2d 691, 692 (2d Cir.

1948). Thus, “[a] device that does not literally infringe a claim

 The Court finds that the ‘216 patent is a non-pioneering8

invention, and thus limits its discussion on this matter to a
footnote. Whether a patent describes a pioneer invention is
relevant to the range of possible equivalents that should be
considered under the doctrine of equivalents. As a general rule,
a “pioneer invention is entitled to a broad range of equivalents.”
Perkin-Elmer Corp. v. Westinghouse Elec. Corp., 822 F.2d 1528, 1532
(Fed. Cir. 1987); see also Sealed Air Corp. v. United States Int’l
Trade Comm’n, 645 F.2d 976, 984 (C.C.P.A. 1981). By contrast, “an
invention representing only a modest advance over the prior art is
given a more restricted (narrower range) application of the
doctrine.” Thomas & Betts Corp. v. Litton Sys., Inc., 720 F.2d
1572, 1580 (Fed. Cir. 1983). “One must start with the claim, and,
though a ‘non-pioneer’ invention may be entitled to some range of
equivalents, a court may not, under the guise of applying the
doctrine of equivalents, erase a plethora of meaningful structural
and functional limitations of the claim on which the public is
entitled to rely in avoiding infringement.” Perkin-Elmer, 822 F.2d
at 1532. The first sentence of the ‘216 Patent describes the
invention as relating “to improvements in systems for software
registration and, more particularly, to improvements in
arrangements where software is transferable by media such as
magnetic disks, CD ROMS and the like.” ‘216 Patent, col. 1, ll. 5-
8. This is clearly not language describing a pioneering invention.
The ‘216 Patent goes on to discuss the limitations of prior
inventions in this field, and distinguishes itself by stating that
“[i]t is an object of the present invention to address or reduce
the above-mentioned disadvantages.” ‘216 Patent, col. 2, ll. 11-
12. Given the significant and closely related prior art cited by
the ‘216 Patent, as well as the prosecution history during which

15

may nonetheless infringe under the doctrine of equivalents if every

element in the claim is literally or equivalently present in the

accused device.” Sage Prods., Inc. v. Devon Indus., Inc., 126 F.3d

1420, 1423 (Fed. Cir. 1997). Under the doctrine, then, a

substantially equivalent process producing substantially the same

result by substantially the same means will also infringe. Graver

Tank & Mfg. Co. v. Linde Air Products Co., 339 U.S. 605, 608 (1950)

(citing Sanitary Refrigerator Co. v. Winters, 280 U.S. 30, 42

(1929)).8

the inventor went to some length to distinguish this invention from
the prior art, the Court finds that the ‘216 Patent is not a
pioneering invention.

16

The critical limitation of the doctrine of equivalents,

however, is that it cannot be applied to the invention as a whole

or even to a single claim in its entirety; rather, it applies only

to individual claim limitations. Warner-Jenkinson Co. v. Hilton

Davis Chem. Co., 520 U.S. 17, 40 (1997); Perkin-Elmer, 822 F.2d at

1532 (“Though the doctrine of equivalents is designed to do equity,

and to relieve an inventor from a semantic strait jacket when

equity requires, it is not designed to permit wholesale redrafting

of a claim to cover non-equivalent devices, i.e., to permit a claim

expansion that would encompass more than an insubstantial

change.”); see also Carman Indus., Inc. v. Wahl, 724 F.2d 932, 942

(Fed. Cir. 1983) (doctrine applies only where there is a “minor

modification”); Sage Prods., 126 F.3d at 1424 (doctrine applies

only where there are “insubstantial differences”). Where an

accused device performs substantially the same function to achieve

substantially the same result, but does so in a substantially

different manner than described by a claim limitation, there can be

no infringement of the claim even under the doctrine of

equivalents. Perkin-Elmer, 822 F.2d at 1531 n.6 (“That a claimed

invention and an accused device may perform substantially the same

function and may achieve the same result will not make the latter

an infringement under the doctrine of equivalents where it performs

17

the function and achieves the result in a substantially different

way.”); see also Graver Tank, 339 U.S. at 608.

In short, infringement of a claim can be found only where,

under both literal and equivalent readings, an inquiring court,

drawing all inferences in favor of Uniloc, finds all elements of

the claim in the accused device. If any are missing, there is no

infringement as a matter of law.

C. Uniloc’s Claims

The ‘216 Patent has five independent claims (Claims 1, 12, 17,

19 and 20) and multiple dependent claims. “It is axiomatic that

dependent claims cannot be found infringed unless the claims from

which they depend have been found to have been infringed[.]”

Wahpeton Canvas Co. v. Frontier, Inc., 870 F.2d 1546, 1553 (Fed.

Cir. 1989); see also Teledyne McCormick Selph v. United States, 558

F.2d 1000, 1004 (Ct. Cl. 1977) (stating that it “has long been

established that a dependent claim . . . cannot be infringed unless

the accused device is also covered by the independent claim”).

Because the Court finds that Microsoft’s Product Activation system

does not infringe independent claims 1, 12, 17, 19, and 20 of the

‘216 Patent, it follows that all dependent claims are similarly not

infringed. The ensuing discussion is therefore limited to two

elements of Claim 1, one element of Claim 12, two elements of Claim

17, and two identical elements of Claims 19 and 20, as provided in

the chart below.

18

‘216 Claim Element missing in Microsoft’s device

Claim 1 Licensee unique ID first generated by said local licensee
unique ID generating means has matched a licensee unique ID
subsequently generated by said remote licensee unique ID
generating means.

Remote licensee unique ID generating means comprises
software executed on a platform which includes the
algorithm utilized by said local licensee unique ID
generating means to produce said licensee unique ID.

Claim 12 Wherein said registration system is replicated at a
registration authority.

Claim 17 Enabling key . . . has matched identically with said
registration key.

Enabling key generated by a third party means of operation
of a duplicate copy of said registration key generating
means.

Claims 19 and 20 Licensee unique ID generated by said local licensee unique
ID generating means has matched a licensee unique ID
generated by said remote licensee unique ID generating
means.

Remote licensee unique ID generating means comprises
software executed on a platform which includes the
algorithm utilized by said local licensee unique ID
generated means to produce said licensee unique ID.

1. Claim 1: A Symmetric System

Claim 1 of the ‘216 Patent requires that “a licensee unique ID

first generated by said local licensee unique ID generating means

has matched a licensee unique ID subsequently generated by said

remote licensee unique ID generating means.” For purposes of this

analysis, the relevant terms are “licensee unique ID,” “local and

remote licensee unique ID generating means,” and “has matched.”

The constructions of those terms are shown below. See Uniloc, 447

F. Supp. 2d at 183-200.

19

Claim Term Court’s Construction

1. Licensee unique ID A unique identifier associated with a licensee.

6. Local licensee
unique ID generating
means
7. Remote licensee
unique ID generating
means

Function: to generate a local or remote licensee
unique ID.
Structure: a summation algorithm or a summer and
equivalents thereof.

16. Has matched A comparison between the locally generated licensee
unique ID and the remotely generated licensee unique
ID shows that the two are the same.

One of Uniloc’s theories of infringement identifies the

licensee unique ID as the Product ID that Microsoft’s system

generates on the client. However, this theory fails because the

Product ID is generated only on the client, not on the server. In

another theory, Uniloc posits that the licensee unique ID is the

“license” data structure that Microsoft’s Product Activation system

generates on the server using an encryption algorithm. This

“license” is subsequently sent and decrypted on the client.

However, this theory of infringement fails to satisfy two separate

elements of Claim 1. First, the “license” data structure is

generated only on the server. Second, the ordering of steps is

incorrect: the “license” data structure is generated first on the

server and subsequently decrypted on the client. Claim 1 imposes

a temporal ordering limitation on the operation of the ‘216

invention. It requires that the licensee unique ID must be

generated first on the client and then matched with a licensee

unique ID subsequently generated on the server. This ordering of

20

steps is detrimental to Uniloc’s efforts to find a licensee unique

ID in Microsoft’s system that meets the requirements of Claim 1.

Uniloc responds to this difficulty by citing its expert’s

report: “Mr. Klausner provides evidence that the accused products

infringe claim 1 under all ‘theories’” by referencing sixty-eight

pages of that report. (Pl.’s Mem. Opp’n Def. Mot. Sum. J. 36-37.)

Page 31 of Mr. Klausner’s report indeed addresses this limitation

of Claim 1 by stating that, “[i]t is my opinion that the accused

Microsoft products perform within the literal scope of this

element. My analysis with respect to literal infringement of this

element is set forth in Exhibit D.” (Klausner Decl., Ex. 2, Tab D

at 31.) Exhibit D is a 300 page report; pages 44 through 52 seem

relevant. (Ex. D to Klausner Expert Report at 44-52.) Nowhere in

these pages, however, which cite to thousands of lines of

Microsoft’s source code, is there any inkling of evidence that

might show that Microsoft’s system generates licensee unique IDs

first on the client and then subsequently on the server using the

same algorithm, as required by Claim 1 of the ‘216 patent. Id.

Finally, both theories fail because even were the Court to

find generation of licensee unique IDs on the client and the server

in the correct order, the licensee unique IDs produced by the

client and the server must match. ‘216 Patent, Claim 1. The

Court’s construction of the disputed claim term “has matched” to

mean “a comparison between the locally generated licensee unique

21

ID/registration key and the remotely generated licensee unique

ID/enabling key shows that the two are the same” reveals the

problem. See Uniloc, 447 F. Supp. 2d at 200. At no point do the

values Uniloc identifies as licensee unique IDs in the context of

Microsoft’s system, that are generated on the client and the

server, match. Instead, the Product ID generated on the client is

later matched with that same Product ID that was sent to the

server, encrypted, and returned from the server in the “license.”

More specifically, the Product ID and Hardware ID generated on the

client during the activation process are compared to the same

Product ID stored in the encrypted “license,” as well as to the

Hardware ID subsequently regenerated on the client upon each use of

the protected software. It is not matched with another Product ID

recomputed on the server. In fact, the raison d'être of licensee

unique IDs in the context of the ‘216 Patent is that they match.

When the licensee unique IDs generated independently on both the

client and the server, by the same algorithm, using the same

inputs, match, that match authenticates that the genuine server-

side registration system was contacted and approved the activation.

Since the true algorithm by which the licensee unique IDs are

generated remains a secret, presumably only the authentic server-

side registration system would know it.

If, as Uniloc contends, the licensee unique ID is the

“license” generated and encrypted on the server and subsequently

22

decrypted by the client, its contents are later matched with the

Product ID and Hardware ID, not another “license” generated by the

client. The “license” is only a container for data initially

collected and processed by the client; it does not directly match

any other value. In this sense, it is not a magic number, but data

with an intrinsic meaning. Once returned from the server and

decrypted on the client, its contents match the original values

collected by the client. At no point are the individual values

that comprise the “license” recomputed on the server.

Turning to another disputed element, Claim 1 requires that the

“remote licensee unique ID generating means comprises software

executed on a platform which includes the algorithm utilized by

said local licensee unique ID generating means to produce said

licensee unique ID.” Id. at 188. The relevant terms are

“algorithm” and “includes the algorithm utilized by said local

licensee unique ID generating means to produce said [remote]

licensee unique ID.” The definitions are shown below. See id. at

192-95.

Claim Term Court’s Construction

9. Algorithm A set of instructions that can be followed to
carry out a particular task

10. Includes the algorithm
utilized by said local
licensee unique ID generating
means to produce said
[remote] licensee unique ID

Includes the identical algorithm used by the
local licensee unique ID generating means to
produce the [remote] licensee unique ID

23

The ‘216 Patent describes an invention where the values

entered by the user on the client side are converted into a

licensee unique ID, and then those raw inputs (but expressly not

the client’s computed licensee unique ID) are sent to the server

and calculated into a licensee unique ID on the server side by the

same algorithm. The server’s licensee unique ID is then sent back

to the client where it is compared to the client’s original

licensee unique ID. They must match in order for the software to

be successfully validated. By contrast, in Microsoft’s system, the

values generated on the client that might be considered licensee

unique IDs (the Product ID and/or the Hardware ID), and the values

that might be considered licensee unique IDs generated on the

server (the “license”), are computed by different algorithms and

their values do not match.

Uniloc strains to find an instance of the same algorithm on

both the client and server side of Microsoft’s system. First,

Uniloc points to Microsoft’s use of encryption and decryption

technology as constituting the “same” algorithm, but encryption and

decryption algorithms are inverses, not the same algorithm. Next,

Uniloc notes that the SHA-1 (secure hashing) and MD5 (cryptographic

hashing) algorithms are present on both the client and server side

of Microsoft’s Product Activation system. According to Uniloc, Mr.

Klausner “independently reviewed the source code and provided

evidence that the algorithms in question were present in the source

24

code for the accused products and the source code for the Microsoft

Clearinghouse.” (Pl.’s Mem. Opp’n Def. Mot. Sum. J. 15.) Once

again Uniloc misses the point: the ‘216 Patent calls for the same

algorithm to be used on both sides as the generating means of

matching licensee unique IDs. That is simply not the case in

Microsoft’s system; its values that might qualify as licensee

unique IDs are produced on both the client and the server, but

these licensee unique IDs are produced by different algorithms,

using different inputs, and hence the resulting licensee unique IDs

do not match.

Finally, even were encryption and decryption to be considered

the “same” algorithm under the doctrine of equivalents, the order

of their use in generating licensee unique IDs in Microsoft’s

system does not follow the order required by the ‘216 Patent. In

Microsoft’s system, the “license” is first encrypted on the server

and then subsequently decrypted on the client. This is precisely

the reverse order from that specified in Claim 1. As Microsoft

notes:

At the Clearinghouse, this algorithm encrypts data,
while on the user’s computer, it decrypts data. Thus,
the encryption algorithm on the remote side takes certain
data D, and encrypts it into E. On the local side, the
decryption algorithm starts with the encrypted data E,
and decrypts it to D. The algorithms are thus the exact
opposite of one another. They also do not have the same
outputs: the output of the encryption algorithm is the
encrypted value E, and the output of the decryption
algorithm is the decrypted value D. E and D are not the
same, and are not compared for matching purposes.

25

(Def. Mot. Sum. J. 35. (internal citations and emphasis omitted).)

In sum, Microsoft’s system is not the symmetric system taught

by the ‘216 Patent. This is not simply an oversight of the ‘216

Patent claims, but, rather, a direct result of the design of its

invention. The requirement that the client- and server-side

algorithms be the same and produce matching values from identical

inputs is the only measure of security in the invention described

by the ‘216 Patent. Contrariwise, Microsoft’s system uses public

key cryptography to ensure the integrity of the activation process.

Public key cryptography is an asymmetric system where a private key

encrypts data (e.g., the “license” data structure) and a

mathematically related public key decrypts it. In the

configuration used by Microsoft’s system, public key cryptography

is employed to authenticate the message returned from the server.

This type of digital signature depends only on the secrecy of the

private key for its integrity.

This very technical difference has very broad implications for

the scope of protection afforded to the ‘216 Patent. It is here

that the macro level difference between the invention described by

the ‘216 Patent and Microsoft’s system can be seen most clearly.

While Uniloc’s invention is an improvement over the prior art (in

part because it does not require a unique serial number to be

burned into each copy of the software media), its symmetry renders

it vulnerable to attack by determined hackers. This is not an

 See Wikipedia, strlen, http://en.wikipedia.org/wiki/Strlen9

(as of October 9, 2007).

26

insubstantial weakness given that a major goal of the invention is

to “prevent copying of the software . . . to another computer[.]”

‘216 Patent Column 1. Microsoft’s asymmetric system is far more

difficult to crack, as it requires discovering Microsoft’s secret

key. Unlike the secret algorithm intended for use but not

disclosed by the ‘216 Patent, Microsoft’s secret key is not part of

the client software and thus is far more difficult to discover.

Uniloc points to several other algorithms (e.g.,

PIDStringtoPIDStruct and FEncryptDecryptUsingPIDHWID) found on both

the client and server side of Microsoft’s system. Once again,

Uniloc misses the point. It is not sufficient merely to find the

identical code on both the client and server systems. Rather,

those algorithms must be used in a manner infringing the claims of

the ‘216 Patent. Uniloc cannot show that the algorithms are used

on the client and the server to produce matching licensee unique

IDs in the correct order as described by the limitations of Claim

1. Many programs contain a high percentage of code copied from

other programs, but that does not make those programs the same.

For example, the “strlen” function, which computes the length of a

text string, is a common algorithm found in nearly every program.9

Surely, its mere presence or even use on both the client and server

side of Microsoft’s system does not infringe on the ‘216 Patent.

27

Were that the case, nearly every software program would infringe

Uniloc’s intellectual property. The critical inquiry is whether

the algorithms are used for the purpose taught by the ‘216 Patent.

For all the reasons explained above, the Court finds, as a matter

of law, that they are not.

2. Independent Claim 12: The Registration Authority

Claim 12 of the ‘216 Patent describes the workings of a

“registration system generating a security key from information

input to said software . . . on a computer on which said software

is to be installed; and wherein said registration system is

replicated at a registration authority” The definitions

given these terms follow. See Uniloc, 447 F. Supp. 2d at 205.

Claim Term Court’s Construction

1. Security key A unique identifier associated with a licensee

22. Wherein said registration
system is replicated at the
registration authority

Wherein the registration system attachable to
software to be protected is reproduced exactly
at the registration authority

Upon further reflection, the Court has decided to clarify its

construction of claim term 22 as follows: Wherein the portion of

the registration system that generates a security key from

information input to software to be protected is reproduced exactly

at the registration authority. This clarifies that only the

portion of the registration system responsible for generating the

security key must be replicated exactly at the registration

authority, not the entire registration system, as the previous

28

construction implied. This reading follows the broader stance of

Claim 12, which describes the registration system as “generating a

security key from information input to [the] software” See

Utah Med. Prods., Inc. v. Graphic Controls Corp., 350 F.3d 1376,

1382 (Fed. Cir. 2003) (noting that there is substantial authority

for the clarification of a disputed claim term, particularly where

the Court clarifies its construction “to more closely align its

interpretation with the claim language and the specification’s

description”); Jack Guttman, Inc. v. Kopykake Enters.,

Inc., 302 F.3d 1352, 1361 (Fed. Cir. 2002) (stating that

“[d]istrict courts may engage in a rolling claim construction, in

which the court revisits and alters its interpretation of the claim

terms as its understanding of the technology evolves. . . . This is

particularly true where issues involved are complex, either due to

the nature of the technology or because the meaning of the claims

is unclear from the intrinsic evidence.” (internal citation

omitted)).

Even with this clarification, however, Uniloc still cannot

point to any potential evidence tending to show that the portion of

Microsoft’s system that generates a security key is reproduced

exactly at the registration authority. The parties’ proposed

constructions at the Markman hearing are telling on this issue.

Uniloc’s proposal required only that the registration authority

“also [have] a system that generates a security key.” Uniloc, 447

29

F. Supp. 2d at 205. Here, Uniloc attempted to summarily dispose of

the replication requirement, a central limitation of Claim 12.

However, though Claim 12 requires the security key generating means

to be replicated at the registration authority, this does not mean

that the entire registration system must be reproduced exactly at

the registration authority. Microsoft’s proposed construction, by

contrast, attempted to disallow the use of encryption or decryption

technology to meet the definition of replicated. Id. As with any

process, the important distinction here is not just whether the

technology exists on the client and the server, but how it is used.

So the mere presence of encryption and decryption technology on the

client and the server does not, without more, suffice to yield a

system that “is replicated at the registration authority.” ‘216

Patent Claim 12.

Uniloc suggests that Claim 12 “requires that the registration

system be attachable to the software to be protected and that it

generate a security key.” (Pl.’s Mem. Opp’n Def. Mot. Sum. J. 32.)

Here, Uniloc attempts to return to its earlier proposed (and

subsequently rejected) reading of Claim 12. In support of its

argument that “the registration system is indeed replicated at the

Microsoft Clearinghouse[,]” Uniloc cites Klausner’s expert report

at 92-107. However, this limitation of Claim 12 is discussed on

pages 61-63 of Klausner’s report. (Klausner Decl., Ex. 2, Tab D at

61-63.) In substance, Klausner is only able to state that, “the

30

function performed by software code of the [Microsoft Registration

System] is that of having the same software code present at the

[Microsoft Clearinghouse] . . . as is present at the local computer

of the Customer” Id. at 62. This is insufficient to meet

Uniloc’s burden. As explained previously, mere presence of the

same computer code on both sides of the system does not suffice to

yield a “registration system [that] is replicated at the

registration authority[.]” ‘216 Patent Claim 12.

Claim 12 of the ‘216 Patent requires an essential symmetry

between the process of generating a security key on the client and

the process on the server to achieve a measure of integrity.

Microsoft’s system, by contrast, relies on asymmetric cryptography

to authenticate the “license” returned from the server. Thus, the

Court finds that independent Claim 12 and its dependent Claims 13-

16 are not infringed by Microsoft’s system.

3. Independent Claims 17, 19 and 20: Same Algorithm
Produces Matching IDs

Claim 17 of the ‘216 Patent requires that the “enabling key .

. . has matched identically with said registration key.”

Furthermore, Claim 17 requires that the “enabling key [be]

generated by a third party means of operation of a duplicate copy

of said registration key generating means.” The relevant terms

here are “registration key,” “enabling key,” “has matched,” and

“generated by a third party means of operation of a duplicate copy

31

of said registration key generating means.” Their respective

constructions follow. See Uniloc, 447 F. Supp. 2d at 183-200.

Claim Term Court’s Construction

2. Registration key
3. Enabling key

A unique identifier associated with a
licensee

11. Generated by a third party
means of operation of a duplicate
copy of said registration key
generating means

Generated by a third party’s use of a
duplicate copy of the registration key
generating means

16. Has matched A comparison between the locally generated
registration key and the remotely
generated enabling key shows that the two
are the same

These limitations of Claim 17 are nearly identical to the

elements of Claim 1 analyzed previously. Claim 1 requires that the

“licensee unique ID . . . generated by said local licensee unique

ID generating means has matched a licensee unique ID . . .

generated by said remote licensee unique ID generating means,” and

that the “remote licensee unique ID generating means comprises

software executed on a platform which includes the algorithm

utilized by said local licensee unique ID generating means”

As noted in the claim construction opinion, “‘third party means of

operation’ simply denotes that the remote location uses a duplicate

copy of the registration key generating means.” Id. at 195.

Because Microsoft’s system does not use the same algorithm (i.e.,

“a duplicate copy of the registration key generating means”) on the

32

client and server to produce matching registration/enabling keys,

there can be no infringement of this claim.

Claims 19 and 20 of the ‘216 Patent require that the

licensee unique ID generated by said local licensee
unique ID generating means has matched a licensee unique
ID generated by said remote licensee unique ID generating
means; and wherein said remote licensee unique ID
generating means comprises software executed on a
platform which includes the algorithm utilized by said
local licensee unique ID generating means to produce said
licensee unique ID.

The only difference between these elements of Claims 19 and 20, and

the equivalent elements of Claim 1, is the lack of the ordering

requirement unique to Claim 1. Claim 1 requires that the “licensee

unique ID first generated by said local licensee unique ID

generating means has matched a licensee unique ID subsequently

generated by said remote licensee unique ID generating means[,]”

(emphasis supplied), whereas Claims 19 and 20 do not specify a

required ordering. Nevertheless, for the reasons articulated in

the discussion of Claim 1, minus the ordering requirement, this

Court finds that Microsoft’s system does not generate matching

licensee unique IDs on the client and the server using the same

algorithm.

III. Conclusion

Digital copies of digital data are perfect, providing little

incentive to the dishonest to acquire works legitimately. Software

developers as well as those engaged in more artistic endeavors

suffer when their creations are copied and consumed illegally.

33

This case presents two competing processes for protecting computer

software, one patented, the other not. Patents on algorithms

implemented in computer software can be a useful way of both

protecting existing inventions and encouraging the development of

new processes. But when those processes take an accused device

outside the claims of the patent, there is no infringement.

For all of these reasons, Microsoft’s Motion for Summary

Judgment is GRANTED, and Uniloc’s Motion for Partial Summary

Judgment is DENIED as moot.

It is so ordered.

William E. Smith
United States District Judge
Date:

